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Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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CCRT[11] Partially Commutative structures from a
functorial point of view and MRS factorisations.

Preamble. – Today, we will consider four categories:

Mon, Grp, k-Lie, k-AAU (1)

In each of these categories, there is a notion of “What are two commuting
elements”

in Mon, Grp, k-AAU, it is xy = yx

in k-Lie it is [x , y ] = 0

but, for all of them, this relation is reflexive and symmetric.
This leads us to the following questions

1 What is the best system or category of formal generators ?
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Plan

1 Monoid (pc words, counting, Cartier-Foata, fine grading)

2 Group (reduced words)

3 k-AAU (double structure: as enveloping algebra and as monoid
algebra)

4 k-Lie

5 MRS Factorisation (arbitrary basis and order)

6 Möbius functions in general

7 Möbius functions for Free PC monoid

8 Closure theorem

9 Some concluding remarks
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2 By “category of formal generators”, we mean, in the noncommutative
world we have noncommutative alphabets and words, in the fully
commutative world, have indeterminates (commutative alphabets)
and monomials (with multiindex power notation).

3 What is the combinatorics of these formulas ?

4 What is Lazard elimination ?

5 In what generality does MRS factorization hold ?

6 What is Magnus theory ? What are its arenas ?

7 What are the characters here ? and Möbius functions ?

5 / 41



First remarks/1

1 As a motivation, we will begin by answering question 7 (the last
one), and by very simple examples.

2 Let us first consider the k-algebra k〈x , y〉 = k[{x , y}∗] of
non-commutative polynomials in the two noncommuting variables x , y
over k.
The character of k〈x , y〉 that sends x and y to α and β is explicitly
given as the Kleene star

(α.x + β.y)∗ =
∑
n≥0

(α.x + β.y)n.

3 Consider now the k-algebra k[x , y ] = k[{xpyq}p,q∈N] of commutative
polynomials in two (commuting) variables x , y over k. As k is
commutative, a character of this k-algebra is uniquely determined by
the images α and β of x and y . Such a character is again determined
by a Kleene star. Indeed

(α.x + β.y − αβ.xy)∗ =
∑
n≥0

(α.x + β.y − αβ.xy)n.
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First remarks/2

4 We remark that these two algebras share a common feature: they are
algebras of monoids, so we will consider this question in general and
see that it covers the celebrated Möbius arithmetic function.

5 We remark also that commutations can be formulated as relations
between words. So we embarks towards the notion of monoidal
relation.
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The category Mon through the looking glass/1.

1 We recall that Mon, the category of monoids, is defined by monoids as
objects and unit-and-products preserving maps between them as arrows.

2 When one want to adress the question “What is a kernel in the category
Mon”, we see that the usual definition through pullbacks [33] does not work
in it. So we have to look closer to the equivalences indiced by morphisms.

3 One can prove the following

Theorem (Th 1)

Let f : M → N be a morphism of monoids and ≡f be the equivalence relation

x1 ≡f x2
def⇐⇒ f (x1) = f (x2) (2)

i) Then
(∀s, t ∈ M)(x1 ≡f x2 =⇒ s.x1.t ≡f s.x2.t) (Cong) (3)
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The category Mon through the looking glass/2.

Theorem (Th 1 cont’d)

ii) Conversely, given a monoid M and an equivalence relation ≡ on M ×M
satisfying (Cong) above there exists a unique structure of monoid on
M/ ≡ such that s, the (set-theoretical) canonical map M → M/ ≡ be a
morphism of monoids (of course, in this case, ≡s equals ≡).

4 We will call congruences equivalence relations on a monoid satisfying
the property (Cong) of eq. (3). We have

Theorem (Th 1 cont’d/3)

iii) The sublattice EqCong(M) of EqRel(M)a is closed by arbitrary (i.e.
finite or infinite) intersections.

aEqRel(X ) is the set of all equivalence relations on a set X . It is a subset of
X × X closed by (finite or infinite) intersections.
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Presentations

5 The preceding study help us to define a monoid presented by
generators and relations.

6 A (monoidal) relator is a set of pairs words R = {(ui , vi )}i∈I
7 The congruence generated by R, is the congruence ≡R is the

intersection of all congruences such that

(u, v) ∈ R =⇒ u ≡ v (4)

we then define
≡R :=

⋂
≡∈EqCong(M)

u≡v for (u,v)∈R

≡ (5)

8 and
〈X ;R〉Mon := X ∗/ ≡R (6)
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Counting the words

9 Take a total ordering on the alphabet X = {x1, . . . , xn} increasingly and X ∗

by the graded lexicographic order ≺grlex (left to right) defined by

u ≺grlex v ⇐⇒ |u| < |v | or u = pxs1, u = pys2 with x < y (7)

10 Order R such that u ≺grlex v for all (u, v) ∈ R.

11 Construct the following sequence

P0 := {1X∗} ; W(0,0) = {1X∗} = X 0;
...

...
... ;

...
...

...
Pn ; W(n,0) = Wn,max(n−1) · · ·Wn,max(n),

; Wn = ∪0≤j≤max(n)W(n,j)

consider all xWn, x ∈ X and ;
eliminate all v with (u, v) ∈ R ; Pn+1 = Pn ∪Wn
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Counting the words/2

Example of the symmetric group

12 The symmetric group Sn can be defined by the Moore-Coxeter presentation

〈{t1, t2, · · · , tn−1}; t2i = 1, ti ti+1ti = ti+1ti ti+1〉Mon (8)

13 For example S3 = 〈{t1, t2}; t2i = 1, t1t2t1 = t2t1t2〉Mon

14 The algorithm gives

P0 := {1X∗} ; W(0,0) = {1X∗} = X 0;
; W(1,1) = {t1} W(1,2) = {t2}
; W1 = {t1, t2}

P1 := {1X∗ , t1, t2} ; W2,1 = {t1t1, t1t2},W2,2 = {t2t1, t2t2}
; W2 = {t1t2, t2t1}

P2 := {1X∗ , t1, t2, t1t2, t2t1} ; W3,1 = {t1t1t2, t1t2t1},
W3,2 = {t2t1t2, t2t2t1},W3 = {t1t2t1}

P3 := {1X∗ , t1, t2, t1t2, t2t1, t1t2t1} ; and then stop because W4 = ∅
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Counting the words/3

15 Let us further consider the (square-free) monoid

〈{a, b}; a2 = b2 = 1〉Mon (9)

16 The algorithm gives

P0 := {1X∗} ; W(0,0) = {1X∗} = X 0;
; W(1,1) = {a} W(1,2) = {b}
; W1 = {a, b}

P1 := {1X∗ , a, b} ; W2,1 = {aa, ab},W2,2 = {ba, bb}
; W2 = {ab, ba}

P2 := {1X∗ , a, b, ab, ba} ; W3,1 = {aab, aba},
W3,2 = {bab, bba},W3 = {aba, bab}

; never stops, normal forms a(ba)∗, b(ab)∗

17 Enumeration M0 = 1; Mn+1 = {a(ba)n, b(ab)n}. Hilbert series

T =
∑

n≥0 |Mn|.tn is here T = 1 +
2x

1− x
=

1 + x

1− x

13 / 41



Counting the words: Hilbert Series

18 When the monoid M is finitely graded (i.e.
M = ]n∈NMn, Mp.Mq ⊂ Mp+q and |Mn| < +∞), we have a Hilbert
series

Hilb(M, t) :=
∑
n≥0
|Mn|.tn (10)

for example, for the commutative monoid M = {xn1yn2zn3tn4}ni∈N
(the one of monomials for the polynomials over the commutative
alphabet X = {x , y , z , t}, graded by the length
|xn1yn2zn3tn4 | = n1 + n2 + n3 + n4, the Hilbert series is

Hilb(M, l) =
1

1− 4l + 6l2 − 4l3 + l4
=

1

(1− l)4
(11)
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Partially Commutative monoids

19 A partially commutative alphabet (X , θ) is a set endowed with a
commutation relation θ ⊂ X × X , reflexive and symmetric.

20 The partially commutative monoid M(X , θ) is

M(X , θ) := 〈X ; (xy , yx)(x ,y)∈θ〉Mon (12)

21 If the alphabet is finite, we have

Hilb(M(X , θ), t) =
1∑

n≥0(−1)ncntn
(13)

where cn is the number of n-cliques of θ. This is a consequence of a
more general theorem of Cartier and Foata [5].
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Where the (forgetful) functor comes: Monoids.

22 Def CAlph be the category of alphabets with commutation i.e.
reflexive and symmetric graphs (X , θ) with f : (X1, θ1)→ (X2, θ2)
such that f : X1 → X2, set-theoretical such that
(u, v) ∈ θ1 =⇒ (f (u), f (v)) ∈ θ2 and Mon the category of monoids.
Now a monoid M being given θM = F (M) = {(u, v) ∈ M | uv = vu}
can be checked to be a functor F : Mon→ CAlph

CAlph Mon

(X , θ) M

M(X , θ)

F

f

j f̂

Figure: M(X , θ) is the monoid freely generated by (X , θ) w.r.t. F . To say
that f ∈ HetF ((X , θ),M) amounts to say that f : X → M set-theoretically
and (u, v) ∈ θ =⇒ f (u)f (v) = f (v)f (u)
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Functor/2: Groups.

23 Let Grp the category of groups. Now a monoid G being given
θG = F (G ) = {(u, v) ∈ G | uv = vu} can be checked to be a functor
F : Grp→ CAlph

CAlph Grp

(X , θ) G

F (X , θ)

F

f

j f̂

Figure: F (X , θ) is the group freely generated by (X , θ) w.r.t. F . To say that
f ∈ HetF ((X , θ),G ) amounts to say that f : X → G set-theoretically and
(u, v) ∈ θ =⇒ f (u)f (v) = f (v)f (u).
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Functor/3: k-Lie algebras.

24 Let k-Lie be the category of k-Lie algebras (k is a ring). Now
L ∈ k-Lie being given θL = F (L) = {(u, v) ∈ L | [u, v ] = 0} can be
checked to be a functor F : k-Lie→ CAlph

CAlph k-Lie

(X , θ) L

Liek(X , θ)

F

f

j f̂

Figure: Liek(X , θ) is the k-Lie algebra freely generated by (X , θ) w.r.t. F .
To say that f ∈ HetF ((X , θ), L) amounts to say that f : X → L
set-theoretically and (u, v) ∈ θ =⇒ [f (u), f (v)] = 0

18 / 41



Functor/4: k-AAU.

25 Let k-AAU be the category of k-algebras (associative with unit) (k is
a ring). Now A ∈ k-AAU being given
θA = F (A) = {(u, v) ∈ A | [u, v ] = 0} can be checked to be a functor
F : k-AAU→ CAlph

CAlph k-AAU

(X , θ) M

k〈X , θ〉

F

f

j f̂

Figure: k〈X , θ〉 is the k-AAU freely generated by (X , θ) w.r.t. F . To say
that f ∈ HetF ((X , θ),A) amounts to say that f : X → A set-theoretically
and (u, v) ∈ θ =⇒ f (u)f (v) = f (v)f (u).
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Links between these free structures.

26 Let us recall the two functorial paths from Set to k-AAU constructed
in a previous CCRT[n]

[Set] −→ [Mon] −→ [k− AAU]
[Set] −→ [k− Lie] −→ [k− AAU]

27 Here, we observe the same phenomenon

[CAlph] −→ [Mon] −→ [k-AAU]
[CAlph] −→ [k-Lie] −→ [k-AAU] (14)

28 From the first path, we get k〈X , θ〉 = k[M(X , θ)] and from the
second k〈X , θ〉 = U(Liek〈X , θ〉).
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MRS factorisation.

29 In fact, for all k,X and θ, the free Lie algebra Liek〈X , θ〉 posesses
combinatorial bases. This solves, by Lazard elimination, a conjecture
by M.P. Schützenberger [9].

30 The combinatorics of partially commutative Lyndon words was
developed at LACIM by P. Lalonde and C. Reutenauer (references on
request).

31 In order to perform MRS, we recall its construction for an arbitrary
Lie algebra.
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MRS: general construction/1

32 Let k be a Q-AAU and g a k-Lie algebra (finite or infinite
dimensional), which is free as a k-module. We consider any totally
ordered basis B = (bi )i∈I of g ((I , <) with < a strict total ordering).
For every α ∈ N(I ), we set

Bα = bα1
i1
bα2
i2
· · · bαm

im

with supp(α) ⊂ {i1 < i2 < · · · < im} (it is easily checked that Bα is
independent from the choice of the “covering” set). For α ∈ N(I ), let
Bα be the linear form of U∗(g) defined by 〈Bα|Bβ〉 = δα,β. We claim
that their convolution (marked with the sign ∗) satisfies

Bα ∗ Bβ =
(α + β)!

α!.β!
Bα+β (15)
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MRS: general construction/2

33 (Proof) In fact, we have

〈Bα ∗ Bβ|Bγ〉 = 〈Bα ⊗ Bβ|∆(Bγ)〉 =

〈Bα ⊗ Bβ|
∑

α1+β1=γ

(
γ

α1, β1

)
Bα1 ⊗ Bβ1〉 =

∑
α1+β1=γ

(
γ

α1, β1

)
〈Bα ⊗ Bβ|Bα1 ⊗ Bβ1〉 =

∑
α1+β1=γ

(
γ

α1, β1

)
δα,α1δβ,β1 = δγ,α+β

(
α + β
α, β

)
(16)
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MRS: general construction/3

Proposition

Let k be a Q-AAU and g a k-Lie algebra which is free as a k-module. Let
B = (bi )i∈I an ordered (totally) basis of g. Then

1 The space
A = spank{(Bα)|α ∈ N(I )} ⊂ U∗(g) (17)

It is an convolution subalgebra of (U∗(g), ∗, ε)
2 If (B, •, 1B) is a commutative algebra every B-valued character

factorises as the following infinite product

χ =
→∏
i∈I

eχ(Bei
) bi (18)

for the topology of pointwise convergence on A (B being discrete)
and ei being the elementary basis of N(i) (ei (j) = δi ,j).
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Partially commutative MRS and Möbius function

34 Using Lazard elimination in Liek〈X , θ〉, one can construct all finely
homogeneous bases of this Lie algebra, order them arbitrarily (and
totally) and apply the preceding construction.

35 Let us now delve in more detail into Cartier and Foata’s result about
M(X , θ) Möbius function.

36 Starting with a monoid (M, ?, 1M), considering k[M] ⊂ k[[M]] = kM ,
we see that in order to extend the product formula

P ? Q :=
∑
uv=w

〈P|u〉〈Q|v〉w (19)

it is sufficient (and necesary in general position) that the map
? : M ×M → M has finite fibersa

aRecall that a map f : X → Y between two sets X and Y has finite fibers if
and only if for each y ∈ Y , the preimage f −1(y) is finite.
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Partially commutative Möbius function/2

37 In this case then we can extend the formula (19) to arbitrary
P,Q ∈ kM (as opposed to merely P,Q ∈ k[M]). In this case, the
k-algebra

(
kM , ?, 1M

)
is called the total algebra of M, a and its

product is the Cauchy product between series.

38 For every S ∈ kM , the family (〈S |m〉m)m∈M is summableb. and its
sum is S =

∑
m∈M〈S |m〉m.

aSee also https://en.wikipedia.org/wiki/Total_algebra.
bWe say that a family (as)s∈S of elements of kM is summable if for any given

n ∈ M, all but finitely many s ∈ S satisfy 〈as |n〉 = 0. Such a summable family
will always have a well-defined infinite sum

∑
s∈S as ∈ kM , whence the name

“summable”.
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Partially commutative Möbius function/2

39 For every series S ∈ k[[M]], we set S+ :=
∑

m 6=1〈S |m〉m.
In order for the family ((S+)n)n≥0 to be summable, it is sufficient
that the iterated multiplication map µ∗ : (M+)∗ → M defined by

µ∗[m1, . . . ,mn] = m1 · · ·mn (product within M) (20)

have finite fibers (where we have written the word
[m1, . . . ,mn] ∈ (M+)∗ as a list to avoid confusion).a

40 In this case the characteristic series of M (i.e.
M =

∑
m∈M m = 1 + M+) is invertible and

M−1 = 1−M+ + M+
2 −M+

3 − · · · =
∑
m∈M

µ(m).m (21)

aFurthermore, this condition is also necessary (if S+ is generic) if k = Z.
These monoids are called “locally finite” in [15].
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Partially commutative Möbius function/3

41 µ : M → Z is called the Möbius function of M.

42 The Möbius function of the multiplicative monoid (N≥1,×) is
well-known. If

n =
∏
p∈P

pνp(n)

µ(n) = 0 if one of the factors ν(p) ≥ 2 (n contains a square) and

µ(n) = (−1)|supp(p 7→νp(n))|

otherwise.

43 It is a particular case of Cartier-Foata theorem [5].
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Partially commutative Möbius function/4

44 The result is∑
m∈M

µ(m).m = M(X , θ)−1 =
∑

C clique of θ

(−1)|C |C (22)

where C is the product of the elements of C ⊂ X .

45 Examples. –
i) θ = ∆X = {(x , x)}x∈X , then M(X , θ) = X ∗, we have

(X ∗)−1 = 1− X (23)

ii) θ = X × X then MX , θ) is the free commutative monoid and

M(X , θ)−1 =
∏
x∈X

(1− x) (24)
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Partially commutative Möbius function/4

44 The Möbius function is non-zero only for the square-free words w
and, in this case, its value is µ(w) = (−1)|w |.
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Partially commutative Möbius function/5

a

b

c

d

45 For this graph, we have

M(X , θ)−1 = 1− a− b− c − d + ab + ad + bc + bd + cd − abd − bcd (25)

46 and, then each commutative character of k〈X , θ〉 is a star of the form

χ =
(
χ(a).a + χ(b).b + χ(c).c + χ(d).d − χ(a)χ(b)ab

−χ(a)χ(d)ad − χ(b)χ(c)bc − χ(b)χ(d)bd − χ(c)χ(d)cd

+χ(a)χ(b)χ(d)abd + χ(b)χ(c)χ(d)bcd
)∗
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Concluding remarks

1 We have seen Free Partially Commutative Structures over the
categories Mon,Grp, k-Lie, k-AAU.

2 These structures are reviewed within several mathematical papers the
most (pre-)categorical one being [10] (other references available on
request).

3 They share many features with the free ones and interpolate between
commutative and noncommutative worlds.

4 To cite only a few: Magnus theory (Magnus transformation
x 7→ 1 + x), Lower central series of the Free Group, Free Lie algebra
within the polynomials, Lyndon words and bases, Lazard elimination,
Lazard codes and Hall bases, Free decompositions of the Monoid,
Group, Lie algebra and associative algebra.
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Concluding remarks

5 A closure theorem exists saying that (in characteristic zero), it is the
maximal framework where Magnus theory holds.

6 Next time, we will speak about universal constructions on differential
modules, localization and wronskians.

Thank you for your attention.

33 / 41



Links

1 Categorical framework(s)

https://ncatlab.org/nlab/show/category

https://en.wikipedia.org/wiki/Category_(mathematics)

2 Universal problems

https://ncatlab.org/nlab/show/universal+construction

https://en.wikipedia.org/wiki/Universal_property

3 Paolo Perrone, Notes on Category Theory with examples from basic
mathematics, 181p (2020)
arXiv:1912.10642 [math.CT]

https://en.wikipedia.org/wiki/Abstract_nonsense

4 Heteromorphism

https://ncatlab.org/nlab/show/heteromorphism

5 D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic
Retrospective, David EllermanPhilosophy Department, University of
California at Riverside
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Links/2

6 https://en.wikipedia.org/wiki/Category_of_modules

7 https://ncatlab.org/nlab/show/Grothendieck+group

8 Traces and hilbertian operators

https://hal.archives-ouvertes.fr/hal-01015295/document

9 State on a star-algebra

https://ncatlab.org/nlab/show/state+on+a+star-algebra

10 Hilbert module

https://ncatlab.org/nlab/show/Hilbert+module
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[11] G. Duchamp, Quoc Huan Ngô and Vincel Hoang Ngoc Minh, Kleene
stars of the plane, polylogarithms and symmetries, (pp 52-72) TCS
800, 2019, pp 52-72.

[12] G. Duchamp, Darij Grinberg, Vincel Hoang Ngoc Minh, Three
variations on the linear independence of grouplikes in a coalgebra,
ArXiv:2009.10970 [math.QA] (Wed, 23 Sep 2020)

37 / 41



[13] G. Duchamp, Christophe Tollu, Karol A. Penson and Gleb A.
Koshevoy, Deformations of Algebras: Twisting and Perturbations ,
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